A block-based background model for moving object detection
نویسندگان
چکیده
Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, we compute the absolute difference between the background frame and each frame of sequence. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficacy.
منابع مشابه
Moving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملStatistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملA Novel Method for Tracking Moving Objects using Block-Based Similarity
Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...
متن کاملAn Improved Gaussian Mixture Model Method for Moving Object Detection
Aiming at the shortcomings of Gaussian mixture model background method, a moving object detection method mixed with adaptive iterative block and interval frame difference method in the Gaussian mixture model is proposed. In this method, the video sequences are divided into different size pieces in order to reduce the amount of calculation of the algorithm. It not only effectively solves the pro...
متن کامل